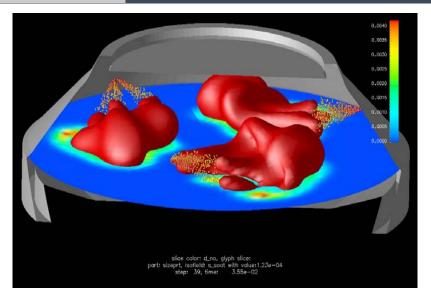


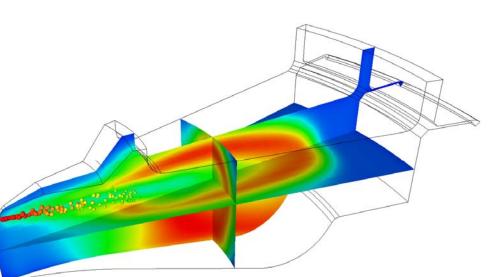
Hercules Task 2.2 Status and Progress, March 2006

General objective:

To develop numerical models on the formation of engine emissions


Detailed objectives:

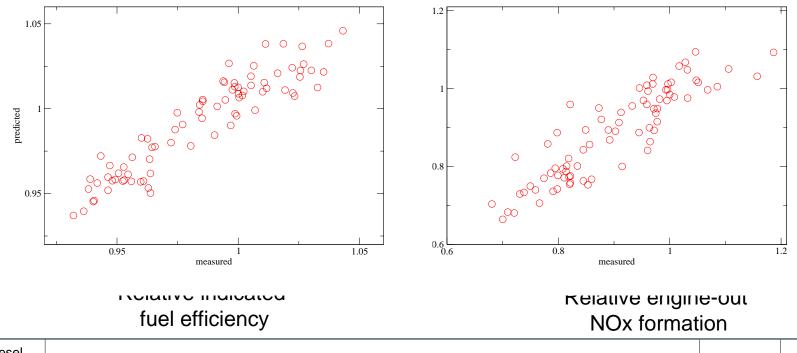
- Numerical description of in-cylinder flow
- Chemical description of combustion and emission formation
- Implementation and integration of sub-models
- Validation and evaluation against measurements
- Application to engine conditions



Three-dimensional modeling of in-cylinder processes

Simulation of two-stroke engine. Iso-surface of predicted soot and color-encoded NOx concentration on plane across the cylinder

CFD simulation for four-stroke engine on sector mesh showing one spray and temperature distribution along three planes



Comparison of results with engine test data

MAN B&W Diesel test engine 4T50ME-X:

- 75 % Load, Variation of:
 - Compression volume, pressure and temperature
 - Fuel injection nozzles
 - Evol injection profiles

Hercules Task 2.2 Technical status, 3 years after start

- Practically all technical activity finalized
- Model results often surprisingly good with regard to SFOC, NOx and ignition delay
- Soot prediction improving thanks to flamelet based soot model, however still considerable problems
- Influence of fuel type on performance often correctly predicted
- Results depend heavily on correct boundary and initial conditions:
 - Fuel injection, timing, geometry, droplet sizes, ...
 - initial velocity (swirl) and charge temperature
 - Detailed studies on both fuel injection and swirl generation in progress
- Further experimental data needed, in particular local data from the combustion chamber interior
- Significant progress in reporting